3.188 \(\int \frac{(a+a \sec (c+d x))^4}{\sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=161 \[ \frac{32 a^4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}+\frac{2 a^4 \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{5 d}+\frac{8 a^4 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{66 a^4 \sin (c+d x) \sqrt{\sec (c+d x)}}{5 d}-\frac{56 a^4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d} \]

[Out]

(-56*a^4*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (32*a^4*Sqrt[Cos[c + d*x]]*E
llipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (66*a^4*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(5*d) + (8*a^4*S
ec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d) + (2*a^4*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d)

________________________________________________________________________________________

Rubi [A]  time = 0.181752, antiderivative size = 161, normalized size of antiderivative = 1., number of steps used = 16, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {3791, 3771, 2639, 2641, 3768} \[ \frac{2 a^4 \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{5 d}+\frac{8 a^4 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{66 a^4 \sin (c+d x) \sqrt{\sec (c+d x)}}{5 d}+\frac{32 a^4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{56 a^4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^4/Sqrt[Sec[c + d*x]],x]

[Out]

(-56*a^4*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (32*a^4*Sqrt[Cos[c + d*x]]*E
llipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (66*a^4*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(5*d) + (8*a^4*S
ec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d) + (2*a^4*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d)

Rule 3791

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Int[Expand
Trig[(a + b*csc[e + f*x])^m*(d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
 && IGtQ[m, 0] && RationalQ[n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rubi steps

\begin{align*} \int \frac{(a+a \sec (c+d x))^4}{\sqrt{\sec (c+d x)}} \, dx &=\int \left (\frac{a^4}{\sqrt{\sec (c+d x)}}+4 a^4 \sqrt{\sec (c+d x)}+6 a^4 \sec ^{\frac{3}{2}}(c+d x)+4 a^4 \sec ^{\frac{5}{2}}(c+d x)+a^4 \sec ^{\frac{7}{2}}(c+d x)\right ) \, dx\\ &=a^4 \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+a^4 \int \sec ^{\frac{7}{2}}(c+d x) \, dx+\left (4 a^4\right ) \int \sqrt{\sec (c+d x)} \, dx+\left (4 a^4\right ) \int \sec ^{\frac{5}{2}}(c+d x) \, dx+\left (6 a^4\right ) \int \sec ^{\frac{3}{2}}(c+d x) \, dx\\ &=\frac{12 a^4 \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{8 a^4 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a^4 \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac{1}{5} \left (3 a^4\right ) \int \sec ^{\frac{3}{2}}(c+d x) \, dx+\frac{1}{3} \left (4 a^4\right ) \int \sqrt{\sec (c+d x)} \, dx-\left (6 a^4\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\left (a^4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx+\left (4 a^4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a^4 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{8 a^4 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{66 a^4 \sqrt{\sec (c+d x)} \sin (c+d x)}{5 d}+\frac{8 a^4 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a^4 \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}-\frac{1}{5} \left (3 a^4\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{3} \left (4 a^4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx-\left (6 a^4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{10 a^4 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{32 a^4 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{66 a^4 \sqrt{\sec (c+d x)} \sin (c+d x)}{5 d}+\frac{8 a^4 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a^4 \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}-\frac{1}{5} \left (3 a^4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{56 a^4 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{32 a^4 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{66 a^4 \sqrt{\sec (c+d x)} \sin (c+d x)}{5 d}+\frac{8 a^4 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a^4 \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}\\ \end{align*}

Mathematica [C]  time = 2.98429, size = 286, normalized size = 1.78 \[ \frac{a^4 \sec ^8\left (\frac{1}{2} (c+d x)\right ) (\sec (c+d x)+1)^4 \left (\frac{30 \cos (c) \sin (d x)-3 (5 \cos (2 c)-61) \csc (c) \cos (d x)+2 \tan (c+d x) (3 \sec (c+d x)+20)}{\sec ^{\frac{7}{2}}(c+d x)}-\frac{8 i \sqrt{2} e^{-i (c+d x)} \sqrt{\frac{e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \cos ^4(c+d x) \left (21 \left (-1+e^{2 i c}\right ) \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (-\frac{1}{4},\frac{1}{2},\frac{3}{4},-e^{2 i (c+d x)}\right )+20 \left (-1+e^{2 i c}\right ) e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},-e^{2 i (c+d x)}\right )+21 \left (1+e^{2 i (c+d x)}\right )\right )}{-1+e^{2 i c}}\right )}{240 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^4/Sqrt[Sec[c + d*x]],x]

[Out]

(a^4*Sec[(c + d*x)/2]^8*(1 + Sec[c + d*x])^4*(((-8*I)*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*
Cos[c + d*x]^4*(21*(1 + E^((2*I)*(c + d*x))) + 21*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeomet
ric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + 20*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*
x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(E^(I*(c + d*x))*(-1 + E^((2*I)*c))) + (-3*(-61
+ 5*Cos[2*c])*Cos[d*x]*Csc[c] + 30*Cos[c]*Sin[d*x] + 2*(20 + 3*Sec[c + d*x])*Tan[c + d*x])/Sec[c + d*x]^(7/2))
)/(240*d)

________________________________________________________________________________________

Maple [B]  time = 2.393, size = 386, normalized size = 2.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^4/sec(d*x+c)^(1/2),x)

[Out]

-a^4*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-56/5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2
*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1
/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+328/15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1
/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/10*cos(1/2*d*
x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^3-132/5*sin(1/2*d*x+1
/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)-4/3*cos(1/2*d*x+1/2*c)*(-
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2
*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sec \left (d x + c\right ) + a\right )}^{4}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^4/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^4/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{a^{4} \sec \left (d x + c\right )^{4} + 4 \, a^{4} \sec \left (d x + c\right )^{3} + 6 \, a^{4} \sec \left (d x + c\right )^{2} + 4 \, a^{4} \sec \left (d x + c\right ) + a^{4}}{\sqrt{\sec \left (d x + c\right )}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^4/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((a^4*sec(d*x + c)^4 + 4*a^4*sec(d*x + c)^3 + 6*a^4*sec(d*x + c)^2 + 4*a^4*sec(d*x + c) + a^4)/sqrt(se
c(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**4/sec(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sec \left (d x + c\right ) + a\right )}^{4}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^4/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^4/sqrt(sec(d*x + c)), x)